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The discovery of a predominant axial conformation in 
2-[ 1,3]dithianyldiphenylphosphine oxide (1) was reported 
recently.l This finding was remarkable from several points 
of view: (1) it  constituted the fmt account of the existence 
of an anomeric interaction between second-row elements 
sulfur and phosphorus,2 (2) unlike other reported examples 
of the anomeric e f f e ~ t , ~  i t  involved a fully bonded sub- 
stituent (i.e., there are no lone pairs of electrons on the 
axially oriented phosphorus atom): and (3) the overall 
steric demands of an axial diphenylphosphinoyl group may 
be quite substantial (Scheme I).s 

Although dipole-dipole interactions were initially in- 
voked to account for the anomeric effect,6 X-ray crystal- 
lographic data led Romers, Altona, e t  al.' to suggest that  
delocalization of nonbonding electrons into the antiperi- 
planar adjacent polar bond contributes to the stability of 

(1) For part 1, see: Juaristi, E.; Valle, L.; Mora-Uzeta, C.; Valenzuela, 
B. A.; Joseph-Nathan, P.; Fredrich, M. F. J. Og. Chem. 1982, 47, 
5038-5039. 

(2) The evaluation of the S-C-S anomeric interaction has been ef- 
fected Hartmann, A. A. Ph.D. Dissertation, 1971, University of Notre 
Dame, Notre Dame, IN. Zefirov, N. S.; Blagoveshchenskii, V. S.; Kazi- 
mirchik, I. V.; Yakovleva, 0. P. J. Org. Chem. USSR (Engl. Transl.) 1971, 
7, 599-602. Juaristi, E.; Tapia, J.; Keys, B.; Eliel, E. L., unpublished 
results. 

(3) Lemieux, R. U.; Koto, S. Tetrahedron 1974,30,1932-1944. Bailey, 
W. F.; Eliel, E. L. J. Am. Chem. SOC. 1974,96, 1798-1806. Szarek, W. 
A.; Horton, D., Eds. "Anomeric Effect, Origin and Consequences"; Am- 
erican Chemical Society: Washington, D.C., 1979; ACS Symp. Ser. No. 
87. Kirby, A. J. "The Anomeric Effect and Related Stereoelectronic 
Effecta at Oxygen", Springer-Verlag: Berlin, 1983. 

(4) It is then clear that the anomeric effect does not require a lone pair 
of electrons on the acceptor atom. 

(5) In spite of the long C-P and C-S bonds, the steric repulsion 
present in axial-1 may be worth ca. 1.25 kcal/mol (see footnote 16 in ref 
1). The experimental measurement of the steric demand of an axial 
diphenylphosphinoyl group on model compounds has been initiated 
(Juaristi, E.; Lijpez-Naiiez, N. A.; Hutchins, R. O., work in progress). 

(6) Edward, J. T. Chem. Ind. (London) 1965, 1102-1104. 
(7) Romers, C.; Altona, C.; Buys, H. R.; Havinga, E. Top. Stereochem. 

1969, 4, 73-77. See also: Altona, C.; Knobler, C.; Romers, C. Acta 
Crystallogr. 1963,16, 1217-1225. Altona, C.; Romers, C. Ibid. 1963,16, 
1225-1232. 

Scheme I 

Table I. Selected Interatomic Distances and Angles in 
1-Axial, 2, and 3, with Standard Deviations in Parentheses 

i - a ~ i a l 4  2bVc 3d 
Bond Lengths (A) 

S(l)-C(2) 1.809 (3)" 1.810 (4), 1.808 (4) 1.792 (5)e 
S ( 1 I - W  1.810 (3)" 1.818 (5), 1.835 (5) 1.823 (4)" 
C(2)-P 1.825 (3) 1.840 (4) 
c(5I-W) 1.517 (5)" 1.520 (7) ,  1.506 (7) 1.518 (5)o 
P-0 1.486 (2) 1.481 (3) 

Bond Angles (deg) 
C(Z)-S(l)-C(S) 101.3 (1)" 97.9 (2), 97.3 (2) 99.2 (2)" 
S(l)-C(2)-S(3) 114.5 (1) 113.1 (2) 114.5 (3) 
S(l)-C(B)-P 110.4 (l)e 106.4 (2), 112.5 (2) 
S(l)-C(6)-C(5) 113.9 (2)" 112.7 (41, 113.3 (4) 112.8 (3)' 
C(4)4(5)-C(6) 113.3 (3) 115.6 (4) 116.7 (3) 

Reference 1. *Present work. Since this molecule deviates 
significantly from C, symmetry the bond lengths and angles of 
each half are listed separately. Reference 10. " Mean values, av- 
eraged assuming C, ring symmetry. 

the axial conformer. According to this proposal, in gauche 
(axial) C-X-C'-Y systems the C'-X distances are signif- 

y -  

icantly shorter than normal while the C'-Y bond lengths 
are longer than normal. This description of the anomeric 
effect has received support from the results of a consid- 
erable number of experimental* and theoreticalg investi- 
gations. 

We here report the results of an X-ray analysis of r- 
2-(diphenylphosphinoyl)-c-4,~-6-dimethyl-1,3-dithiane (2). 

2 3 

Comparisons with structural data for 1-axial1 as well as 
cis-4,6-dimethyl-1,3-dithiane (3)'O were made in order to  
examine the possible importance of ns - o*op interactions 
which, if significant, would be manifested in shortened C-S 
and elongated C-P distances in the axial vs. equatorial 
form. 

Results and Discussion 
The crystal structure of 2 was solved by direct meth- 

ods." Refinement of atomic parameters12 converged to 

(8) Jeffrey, G. A. "Anomeric Effect, Origin and Consequences": Am- 
erican Chemical Society: Washington, D.C., 1979; ACS Symp. Ser. No. 
87, pp 50-62. Paulsen, H.; Luger, P.; Heiker, F. R. Ibid. pp 63-79. 
Corfield, P. W. R.; Mokren, J. D.; Durette, P. L.; Horton, D. Carbohydr. 
Res. 1972,23,15&162. See also: Linscheid, P.; Lucken, E. A. C. J.  Chem. 
SOC. D 1970,425-426. 

(9) Jeffrey, G. A.; Pople, J. A.; Radom, L. Carbohydr. Res. 1972,26, 
117-131. Gorenstein, D. G.; Findlay, J. B.; Luxon, B. A.; Kar, D. J. Am. 
Chem. SOC. 1977,99,3473-3479. Jeffrey, G. A.; Pople, J. A.; Binkley, J. 
S.; Vihveshwara, S. Ibid. 1978,100,373-379. Davis, S. "Anomeric Effect, 
Origin and Consequences", American Chemical Society: Washington, 
D.C., 1979; ACS Symp. Ser. No. 87, pp 1-16. Wolfe, S.; Whangbo, M.-H.; 
Mitchell, D. J. Carbohydr. Res. 1979,69, 1-26. 

(10) McPhail, A. T.; Onan, K. D.; Koskimies, J. J. Chem. SOC., Perkin 
Trans. 2 1976, 1004-1008. 

0022-3263/84/1949-3026S01.50/0 I ,  , 0 1984 American Chemical Society 



J. Org. Chem. 1984,49, 3027-3029 3027 

Figure 1. Structure and solid-state conformation of 2; small 
circles denote hydrogen atoms. 
R = 0.04813 over 2128 reflections. A view of the solid-state 
conformation is in Figure 1. The l,&dithiane ring has a 
chair c~nfo rma t ion '~  with an equatorially oriented sub- 
stituent at C(2), and the diphenylphosphinoyl oxygen atom 
is gauche to both sulfur atoms but is asymmetrically dis- 
posed16 with respect to them in order to accomodate 
nonbonded interactions between the bulky substituent and 
the ring atoms. The heterocyclic ring in 2 is slightly more 
puckered around C(2) than in 31° and significantly more 
puckered than in 1-axial where relief must be gained from 
severe l,&diaxial nonbonded interactions between the 
phosphinoyl substituent and the ring hydrogen atoms at 
C(4) and C(6). 

Selected bond lengths and angles for 2 together with 
corresponding values for 1-axial and 3 are in Table I. 
Comparison of these values reveals that although the mean 
S(l)-C(S) distance in 2 is slightly longer than that in 1- 
axial, it is very close to that in 3, and accordingly, the 
elongation may be ascribed to the introduction of the 
methyl substituents into the l,&dithiane ring.l0 The C-P 
distance in 2 is quite similar to, but possible significantly 
longer than, that in 1-axial. This latter observation, as well 
as the lack of any significant difference in the mean S- 
(1)-C(2) lengths, is contrary to expectations if an ns - 
u * & ~  interaction makes an important contribution to the 
preferred axial conformation in 1. Alternative rationali- 
zations of the effect(s) responsible for the conformational 
behavior of 1 will be discussed in a forthcoming paper.ls 

Experimental Section 
r -2-( Mphen y lphosphinoy 1)-c -4,c -6-dimet hyl- 1,3-dithiane 

(2). cis-4,6-Dimethyl-l,3-dithiane (3)" (297 mg, 2 mmol) was 
placed in a dry round-bottomed flask provided with a magnetic 
stirring bar and capped with a rubber septum. The flask was 
flushed with nitrogen prior to the addition of 7 mL of dry THF 

(11) Main, P.; Leeeinger, L.; Woolfson, M. M.; Germain, G.; Declerq, 
J.-P. "MULTAN76, A System of Computer Programmes for the Auto- 
matic Solution of Crystal Structures"; Universities of York and Louvain, 
1976 _ _  . _. 

(12) Supplementary material; see paragraph at end of paper. 

(14) Endocyclic torsion angles, w . '  (O), around the bonds between at- 
o m  i and j in 2 follow: wI2 = -64.goO, o~~ = @.lo, 03, = -59.2O, o , ~  = 
65.2O, use = -65.4O, wel = 59.5O; corresponding values'are -61.8', 61h0, 
-66 .8O,  d3.8O. -64.2O, d7.3O in 3, and -56.4O, 54.3O, -55.8O. 66.4O, -67.3O, 

(13) R = CIFOI - l~cll/XF I. 

58.6O in 1-axial. 
(15) S-C-P-O torsion angles are 32.9O and -91.5' in 2. 
(16) Juaristi, E.; Valle, L.; Valenzuela, B. A., unpublished results. 
(17) Prepared according to Eliel, E. L.; Hartmann, A. A,; Abatjoglou, 

A. G. J. Am. Chem. SOC. 1974,96, 1807-1816. 

via a cannula, after which the solution was cooled to -22 OC and 
n-butyllithium (1.53 mL of a 1.37 M hexane solution, 2.1 mmol, 
5% excess) was syringed into it dropwise. The resulting solution 
was stirred for 90 min at -20 OC following which it was added 
to a THF solution (ca. 10 mL) of chlorodiphenylphosphine (530 
mg, 2.4 mmol,20% excess) and tetramethylethylenediamine (232 
mg, 2 mmol) also at -20 OC. The reaction mixture was stirred 
at this temperature for 90 min and subsequently at room tem- 
perature for a further 3 h before being quenched with saturated 
aqueous ammonium chloride. Extraction with CHC13 followed 
by the usual workup procedure afforded 146 mg (21% yield) of 
2 as a white solid mp 233-235 "C; 'H NMR (90 MHz, CDC1,; 
Me4Si) 6 1.23 (d, '&H = 6.6 Hz, 6 H), 1.3 (d of t, JBem = 14.1 
Hz, J,ti = 12 Hz, 1 &%6 (d oft, Jgem = 14.1 Hz, J = 2.5 
Hz, 1 H), 2.9 (m, 2 H), 4.98 (d, 'Jp4-H = 15 Hz, 1 HY, 7.3-8.15 
(m, 10 H); IR 3090 (w), 2882 (s), 1439 (s), 1194 (vs) cm-l; MS, m/e  
348 (M+), 315 (M' - 33), 201 (M+ - 147), 147 (M' - 201), 77 (M+ 
- 271). 

Crystal Data: CleHzlOPSz (2) M, 348.47; monoclinic; a = 
38.886 (16) A, b = 5.773 (2) A, c = 16.651 (7) A, B = 104.60 (l)', 
U = 3617.3 A', Z = 8, d d  = 1.280 g cm"; absorption coefficient 
for Cu Ka radiation (X = 1.5418 A), p = 33.8 cm-'. Space group 
Cc(C,4) or C ~ / C ( C % ~ )  from systematic absences: hkl when h + 
k # 2n, h01 when 1 # 2n; shown to be the latter by structure 
solution and refinement. 

Intensity data (hkhl), recorded on an Enraf-Nonius CAD-3 
automated diffractometer from a crystal of dimensions ca. 0.16 
x 0.18 X 0.80 mm as described previously1° (Ni-filtered Cu Ka 
radiation; 8-28 scans, 0- = 67O), yielded 3239 independent values 
from which those 2128 with I > 2.00(I) were retained for the 
structure analysis. 

Structure Analysis and Refinement. The crystal structure 
of 2 was solved by direct methods." Full-matrix least-squares 
adjustment of atomic positional and thermal parameten converged 
to R = 0.048.13 For structurefactor calculations, scattering factors 
for carbon, oxygen, phosphorus, and sulfur were from ref 18, and 
for hydrogen from ref 19; the values for phosphorus and sulfur 
were corrected for anomalous dispersion In the 
least-squares iterations, the weighting scheme used w1I2 = 1 for 
IF01 560.0,  and wl/* = 60.0/IFoJ for lFol 7 60.0, showed no sys- 
tematic dependence of (wA2) when analyzed in ranges of IF01 F d  
sin 0. Final atomic positional and thermal parameters are In 
Tables 11-IV in supplementary material.12 

Registry No. 1, 83476-36-2; 2, 83463-92-7; 3, 22452-23-9. 

Supplementary Material Available: Fractional atomic 
coordinates (Tables I1 and IV), anisotropic thermal parameters 
(Table 111), bond lengths and angles (Table V), torsion angles 
(Table VI), displacements of atoms from selected least-squares 
planes (Table VII), and a list of observed and calculated structure 
amplitudea (Table VIII) (22 pages). Ordering information is given 
on any current masthead page. 

(18) Cromer, D. T.; Weber, J. T. Acta Cryatallogr. 1966,18,104-109. 
(19) Stewart, R. F.; Davideon, E. R.; Simpson, W. T. J.  Chem. Phys. 

(20) "International Tablea for X-Ray Crystallography", Kynoch Press: 
1966,42, 3175-3187. 

Birmingham, England, 1968; Vol. III, p 214. 
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Alkyl halides are important intermediates in organic 
synthesis. The  conversion of alcohols into their corre- 
sponding halides is frequently a useful and necessary 
synthetic operation. During recent research in the  syn- 
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