their hospitality during his sabbatical leave when this manuscript was prepared.

Registry No. 1, 90605-30-4; PhCO₂Et, 93-89-0; CH₃- $(CH_2)_{10}CO_2Et$, 106-33-2; p-MeOC₆H₄CO₂Et, 94-30-4; cis-CH₃- $\left(\text{CH}_2\right)_7\text{CH}=\text{CH}(\text{CH}_2)_7\text{CO}_2\text{Me}$, 112-62-9; PhCO₂-*i*-Pr, 939-48-0; $PhCO_{2}$ -t-Bu, 774-65-2; PhCN, 100-47-0; PhCH₂CN, 140-29-4; PhCONH₂, 55-21-0; PhCO₂H, 65-85-0; PhCH₂OH, 100-51-6; $CH_3(CH_2)_7CH=CH(CH_2)_8OH$, 143-28-2; PhCH₂NH₂, 100-46-9. CH₃(CH₂)₁₁OH, 112-53-8; p-MeOC₆H₄CH₂OH, 105-13-5; *cis-*

Conformational Analysis of S-C-P Anomeric Interactions. 2.l X-ray Crystallographic Conjugation in Axial 2-[1,3]Dithianyldiphenylphosphine Oxide Evidence against the Importance of $n_S \rightarrow \sigma^*_{C-P}$

Euaebio Juaristi,* Bertha A. Valenzuela, and Lucia Valle

Departamento de Quimica, Centro de InvestigaciBn y de $Estudios$ Avanzados del Instituto Politécnico Nacional, *Apartado Postal 14-740, 07000-MGxico, D.F., Mexico*

Andrew T. McPhail*

Paul M. Gross *Chemical Laboratory, Duke University, Durham, North Carolina 27706*

Received December 13, 1983

The discovery of a predominant axial conformation in **2-[1,3]dithianyldiphenylphosphine** oxide **(1)** was reported recently.¹ This finding was remarkable from several points of view: (1) it constituted the first account of the existence of an anomeric interaction between second-row elements sulfur and phosphorus,² (2) unlike other reported examples of the anomeric effect,³ it involved a fully bonded substituent (i.e., there are no lone pairs of electrons on the axially oriented phosphorus atom),⁴ and (3) the overall steric demands of an **axial** diphenylphosphinoyl group may be quite substantial (Scheme I).⁵

Although dipole-dipole interactions were initially invoked to account for the anomeric effect, 6 X-ray crystallographic data led Romers, Altona, et al.' to suggest that delocalization of nonbonding electrons into the antiperiplanar adjacent polar bond contributes to the stability of

Scheme I

Table I. Selected Interatomic Distances and Angles in 1-Axial, 2, and *3,* **with Standard Deviations in Parentheses**

^aReference 1. ^bPresent work. ^cSince this molecule deviates significantly from C, **symmetry** the bond lengths and angles of each half are listed separately. ^d Reference 10. *"* Mean values, averaged assuming C, ring symmetry.

the axial conformer. According to this proposal, in gauche (axial) C-X-C'-Y systems the C'-X distances are signif-

icantly shorter than normal while the C'-Y bond lengths are longer than normal. This description of the anomeric effect has received support from the results of a considerable number of experimental⁸ and theoretical⁹ investigations.

We here report the results of an X-ray analysis of *r-***2-(diphenylphosphinoyl)-c-4,~-6-dimethyl-1,3-dithiane (2).**

Comparisons with structural data for 1 -axial¹ as well as **cis-4,6-dimethyl-1,3-dithiane (3)'O** were made in order to Comparisons with structural data for 1-axial¹ as well as *cis-4*,6-dimethyl-1,3-dithiane (3)¹⁰ were made in order to examine the possible importance of $n_S \rightarrow \sigma^*_{C-P}$ interactions which, if significant, would be manif and elongated C-P distances in the axial vs. equatorial form.

Results and Discussion

The crystal structure of **2** was solved by direct meth- \log^{11} Refinement of atomic parameters¹² converged to

⁽¹⁾ For part 1, see: Juaristi, E.; Valle, L.; Mora-Uzeta, C.; Valenzuela, B. A.; Joseph-Nathan, P.; Fredrich, M. F. J. **Og.** Chem. 1982, *47,* 5038-5039.

⁽²⁾ The evaluation of the S-C-S anomeric interaction has been effected: Hartmann, A. A. Ph.D. Dissertation, 1971, University of Notre Dame, Notre Dame, IN. Zefirov, N. S.; Blagoveshchenskii, V. S.; Kazimirchik, I. V.; Yako *7,* 599-602. Juaristi, E.; Tapia, J.; Keys, B.; Eliel, E. L., unpublished results.

⁽³⁾ Lemieux, R. U.; **Koto,** *S. Tetrahedron* 1974,30,1932-1944. Bailey, W. F.; Eliel, E. L. *J. Am. Chem.* SOC. 1974,96, 1798-1806. Szarek, W. A.; Horton, D., Eds. "Anomeric Effect, Origin and Consequences"; Am-erican Chemical Society: Washington, D.C., 1979; ACS Symp. Ser. No. 87. Kirby, A. J. "The Anomeric Effect and Related Stereoelectronic Effecta at Oxygen", Springer-Verlag: Berlin, 1983.

⁽⁴⁾ It is then clear that the anomeric effect does not require a lone pair of electrons on the acceptor atom.

⁽⁵⁾ In spite of the long C-P and C-S bonds, the steric repulsion present in axial-1 may be worth *ca.* 1.25 kcal/mol (see footnote 16 in ref 1). The experimental measurement of the steric demand of an axial diphenylphosphinoyl group on model compounds has been initiated (Juaristi, E.; Lijpez-Naiiez, N. A.; Hutchins, R. O., work in progress).

⁽⁶⁾ Edward, J. T. Chem. *Ind. (London)* 1965, 1102-1104. (7) Romers, C.; Altona, C.; Buys, H. R.; Havinga, E. Top. *Stereochem.* 1969, *4,* 73-77. See also: Altona, C.; Knobler, C.; Romers, C. *Acta Crystallogr.* 1963,16, 1217-1225. Altona, C.; Romers, C. *Ibid.* 1963,16, 1225-1232.

⁽⁸⁾ Jeffrey, G. A. "Anomeric Effect, Origin and Consequences": American Chemical Society: Washington, D.C., 1979; ACS Symp. Ser. No.
87, pp 50–62. Paulsen, H.; Luger, P.; Heiker, F. R. *Ibid*. pp 63–79.
Corfield, P. W. R.; Mokren, J. D.; Durette, P. L.; Horton, D. *Carbohydr.*
Res. 19 *SOC. D* 1970,425-426.

⁽⁹⁾ Jeffrey, G. A.; Pople, J. A.; Radom, L. Carbohydr. Res. 1972, 25, 117-131. Gorenstein, D. G.; Findlay, J. B.; Luxon, B. A.; Kar, D. J. Am. Chem. Soc. 1977, 99, 3473-3479. Jeffrey, G. A.; Pople, J. A.; Binkley, J. S.; V Origin and Consequences", American Chemical Society: Washington,
D.C., 1979; ACS Symp. Ser. No. 87, pp 1–16. Wolfe, S.; Whangbo, M.-H.;
Mitchell, D. J. Carbohydr. Res. 1979, 69, 1–26.

(10) McPhail, A. T.; Onan, K. D.; Kos

Trans. 2 1976, 1004-1008.

Figure 1. Structure and solid-state conformation of **2;** small circles denote hydrogen atoms.

 $R = 0.048^{13}$ over 2128 reflections. A view of the solid-state conformation is in Figure 1. The $1,3$ -dithiane ring has a chair conformation¹⁴ with an equatorially oriented substituent at C(2), and the diphenylphosphinoyl oxygen atom is gauche to both **sulfur** atoms but is asymmetrically disposed16 with respect to them in order to accomodate nonbonded interactions between the bulky substituent and the ring atoms. The heterocyclic ring in **2** is slightly more puckered around **C(2)** than in **31°** and significantly more puckered than in **1-axial** where relief must be gained from severe 1,3-diaxial nonbonded interactions between the phosphinoyl substituent and the ring hydrogen atoms at **C(4)** and C(6).

Selected bond lengths and angles for **2** together with corresponding values for 1-axial and 3 are in Table I. Comparison of these values reveals that although the mean S(l)-C(S) distance in **2** is slightly longer than that in **1** axial, it is very close to that in 3, and accordingly, the elongation may be ascribed to the introduction of the methyl substituents into the $1,3$ -dithiane ring.¹⁰ The C-P distance in **2** is quite similar **to,** but possible significantly longer than, that in **1-axial.** This latter observation, **as** well as the lack of any significant difference in the mean **S-** (1)-C(2) lengths, is contrary to expectations if an $n_s \rightarrow$ σ^*_{C-P} interaction makes an important contribution to the preferred axial conformation in **1.** Alternative rationalizations of the effect(s) responsible for the conformational behavior of **1** will be discussed in a forthcoming paper.ls

Experimental Section

r **-2-(Mphen y lphosphinoy 1)-c -4,c -6-dimet hyl- 1,3-dithiane (2). cis-4,6-Dimethyl-l,3-dithiane (3)" (297** mg, **2** mmol) was placed in a *dry* round-bottomed flask provided with a magnetic stirring bar and capped with a rubber septum. The **flask** was flushed with nitrogen prior to the addition of **7** mL of dry THF

via a cannula, after which the solution was cooled to -22 °C and n-butyllithium **(1.53 mL** of a **1.37** M hexane solution, **2.1** mmol, 5% excess) was syringed into it dropwise. The resulting solution was stirred for 90 min at -20 °C following which it was added to a THF solution (ca. **10** mL) of chlorodiphenylphosphine **(530** *mg,* **2.4** mmol,20% excess) and tetramethylethylenediamine **(232** mg, 2 mmol) also at -20 °C. The reaction mixture was stirred at this temperature for **90** min and subsequently at room temperature for a further **3** h before being quenched with saturated aqueous ammonium chloride. Extraction with $CHCl₃$ followed by the usual workup procedure afforded **146** mg **(21%** yield) of 2 as a white solid: mp 233-235 °C; ¹H NMR (90 MHz, CDCl₃;

 Me_4Si) δ 1.23 (d, ${}^3J_{CH_3-C-H}$ = 6.6 Hz, 6 H), 1.3 (d of t, J_{gem} = 14.1 Hz , $J_{\text{anti}} = 12 \text{ Hz}, 1 \text{ H}$), 2.06 (d of t, $J_{\text{geom}} = 14.1 \text{ Hz}, J_{\text{gauche}} = 2.5$ Hz, 1 H , 2.9 (m, 2 H), 4.98 (d, ² $J_{\text{P-C-H}}$ = 15 Hz, 1 H), 7.3-8.15 (m, **10** H); IR **3090** (w), **2882 (s), 1439** (s), **1194** (vs) cm-l; MS, *m/e* **³⁴⁸**(M+), **315** (M' - **33), 201** (M+ - **147), 147** (M' - **201), 77** (M+ - **271).**

Crystal Data: $C_{18}H_{21}OPS_2$ (2) M_1 348.47; monoclinic; $a =$ **38.886 (16) Å,** $b = 5.773$ **(2) Å,** $c = 16.651$ **(7) Å,** $\beta = 104.60$ **(1)^o,** $U = 3617.3 \text{ Å}^3$, $Z = 8$, $d_{\text{calod}} = 1.280 \text{ g cm}^{-3}$; absorption coefficient for Cu K α radiation $(\lambda = 1.5418 \text{ Å})$, $\mu = 33.8 \text{ cm}^{-1}$. Space group $Cc(C_s^4)$ or $C_2/c(C_{2h}^6)$ from systematic absences: *hkl* when $h +$ $k \neq 2n$, *hol* when $l \neq 2n$; shown to be the latter by structure solution and refinement.

Intensity data (hk±l), recorded on an Enraf-Nonius CAD-3 automated diffractometer from a crystal of dimensions ca. **0.16 x 0.18 X 0.80** mm **as** described previously1° (Ni-filtered Cu *Ka* radiation; θ -2 θ scans, $\theta_{\text{max}} = 67^{\circ}$), yielded 3239 independent values from which those 2128 with $I > 2.0\sigma(I)$ were retained for the structure analysis.

Structure Analysis and Refinement. The crystal structure of **2** was solved by direct methods." Full-matrix least-squares adjustment of atomic positional and thermal parameten converged to $R = 0.048$.¹³ For structure-factor calculations, scattering factors for carbon, oxygen, phosphorus, and **sulfur** were from ref **18,** and for hydrogen from ref **19;** the values for phosphorus and sulfur were corrected for anomalous dispersion effects. 20 least-squares iterations, the weighting scheme used: $w^{1/2} = 1$ for $|F_0| \le 60.0$, and $w^{1/2} = 60.0/|F_0|$ for $|F_0| > 60.0$, showed no systematic dependence of $\langle w\Delta^2 \rangle$ when analyzed in ranges of $|F_0|$ and $sin \theta$. Final atomic positional and thermal parameters are in Tables II-IV in supplementary material.¹²

Registry No. 1, 83476-36-2; 2, 83463-92-7; 3, 22452-23-9.

Supplementary Material Available: Fractional atomic coordinates (Tables I1 and IV), anisotropic thermal parameters (Table 111), bond lengths and angles (Table V), torsion angles (Table VI), displacements of atoms from selected least-squares planes (Table VII), and a list of observed and calculated structure amplitudea (Table VIII) **(22** pages). Ordering information is given on any current masthead page.

(20) "International Tablea for X-Ray Crystallography", Kynoch **Press: Birmingham, England, 1968; Vol. III, p 214.**

Reaction of Alcohols with Zinc Halide, Diethyl Azodicarboxylate, and Triphenylphosphine. An Effective Method for the Preparation of Halides

Pak-Tsun Ho* and Nancy Davies

Guelph- Waterloo Center for Graduate Work in Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Received January 10, 1984

Alkyl halides are important intermediates in organic synthesis. The conversion of alcohols into their corresponding halides is frequently a useful and necessary synthetic operation. During recent research in the syn-

0022-3263/84/1949-3027\$01.50/0 *0* **1984** American Chemical Society

⁽¹¹⁾ Main, P.; Leeeinger, L.; Woolfson, M. M.; Germain, G.; Declerq, J.-P. "MULTAN76, A System of Computer Programmes for the Automatic Solution of Crystal Structures"; Universities of York **and Louvain, 1976** __ . _.

⁽¹²⁾ Supplementary material; see paragraph at end of paper.

⁽¹²⁾ Supplementary material,
(13) $R = \sum |F_0| - |F_0||/\sum |F_0|$.

⁽¹⁴⁾ Endocyclic torsion angles, ω_{ij} (°), around the bonds between atoms *i* and *j* in 2 follow: $\omega_{1,2} = -64.9^{\circ}$, $\omega_{2,3} = 64.1^{\circ}$, $\omega_{3,4} = -59.2^{\circ}$, $\omega_{4,5} = 65.2^{\circ}$, $\omega_{5,6} = -65.4^{\circ}$, $\omega_{6,1} = 59.5^$ **58.6O in 1-axial.**

⁽¹⁵⁾ S-C-P-O torsion angles are 32.9° and -91.5° in 2.
(16) Juaristi, E.; Valle, L.; Valenzuela, B. A., unpublished results. (17) Prepared according to Eliel, E. L.; Hartmann, A. A.; Abatjoglou, A. G. J. Am. Chem. Soc. 1974, 96, 1807-1816.

⁽¹⁸⁾ Cromer, D. T.; Weber, J. T. *Acta Cryatallogr.* **1966,18,104-109. (19) Stewart, R. F.; Davideon, E. R.; Simpson, W. T.** *J. Chem. Phys.* **1966,42, 3175-3187.**